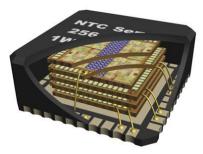
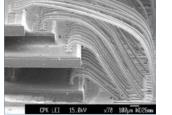
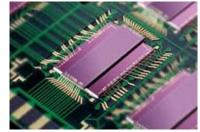


NextFlex The flexible future of ELECTRONICS

iMAPS New England 43rd Symposium & Expo May 03, 2016

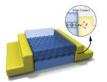



Building a National Network of Institutes Network Status


Broad Spectrum of Electronic Packaging

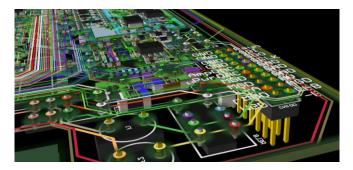
2.5D and 3D Die stacking Component/Devices

http://www.palomartechnologies.com Stack Die (3D IC) Assembly Traditional Wire-bonding

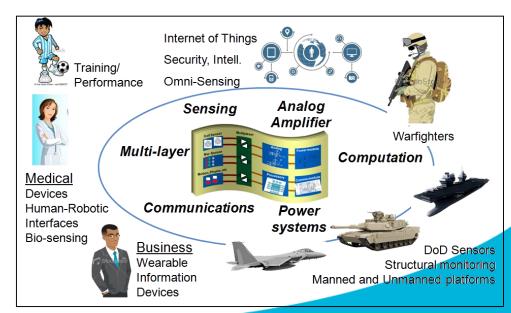


OPTOMEC 3D Additive Die interconnects Electronic Manufacturing Technologies that deliver DoD Systems

Prof. David Wentzloff Univ Michigan EECS


Longer-term RD (Low TRL)

- 2D materials that support future components (processors, memory, etc)
- Printed electronics: Longer term for Active Components



Printed Circuit Board Layouts Multi-layer thru-vias

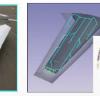
What is Flexible Hybrid Electronics?

- Integration of electronic components onto non-traditional flexible, stretchable substrates
- > Intersection of high performance printing industry with thinned CMOS using EMS supply chain
- Medium density / medium area electronics which can bend / conform / or even stretch.
- Increased functionality through integrated electronics which measure or act at the point of interest
- Use novel materials, components, interconnects and designs while adopting existing electronics manufacturing processes and tools as much as possible.

Flexible Hybrid Electronics

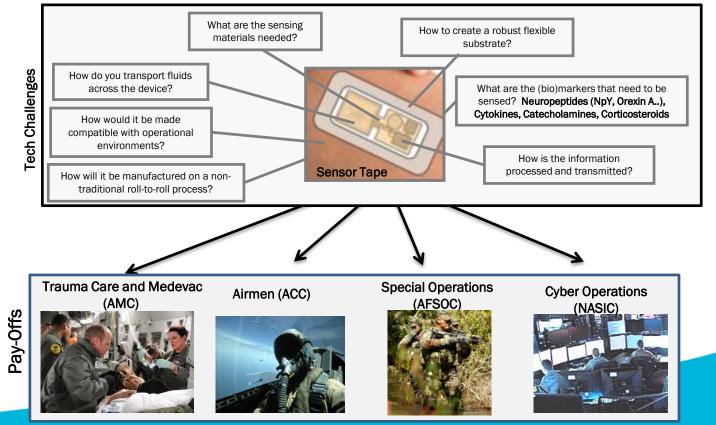
IMPACT

- Novel Form Factors
- Light-weight, rugged
- Low-cost approaches through new manufacturing
- Enabling novelsensing capabilities


NextFlex is supporting a wide Range of DoD missions

DOD EXAMPLES

Flexible ubiquitous Sensors


Conformable, compact, lightweight, flexible, low-power electronics and sensors

Biomarker sensors (AFRL)

Future Vision Example - Human System Platforms Detecting Biomarkers in Sweat

<u>Goal:</u> <\$2, 24-72 hr, non-invasive, tailorable, common mfg platform, integrated with local network

Flexible Hybrid Electronics

Commercial Manufacturing Ecosystem

Enabling a Manufacturing Eco-system...

...to support technology

NextFlex America's Flexible Hybrid Electronics Manufacturing Institute

Established: 28 August 2015 Lead: FlexTech Alliance Hub location and fab: San Jose, California Proposed Members: 145+ in 27 states Federal Funding: \$75M Gov't agency engaged: 17 DOD and OGAs

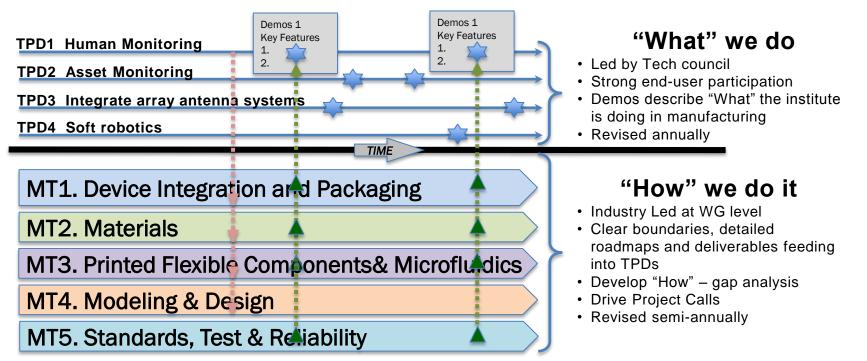
<u>Focus:</u> Combining the entrepreneurial & innovative culture of Silicon Valley with a national network of regional & technology nodes to commercialize FHE technology through manufacturing advancements in integrated printing & packaging, system design tools, materials scale-up, thinned device processing, and reliability testing & modeling.

Manufacturing development for technology Applications

Catalyzing a robust and innovative manufacturing ecosystem at the intersection of the electronics and high performance printing industries.

Announcement Day

AUGUST 28, 2015


Building a Robust Public-Private Partnership

Current Membership

Strategic Roadmapping Framework

Last week we had 660 attendees at FLEX2016 from Industry, academia, government (FTA run) Technical Working Groups: 140 participants focused on the Roadmapping

Technical Development Approach Manufacturing Thrusts

- Five Manufacturing Thrusts
- The manufacturing thrust are demonstrated through four "Technology Platform Demonstrations"

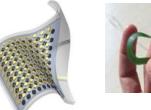
MT1- Device Integration & Packaging

Development of new tools for testing, slicing, and thinning of silicon wafers as well as for electronic device and sensor integration on flexible, stretchable, and/or foldable substrates. Leveraging advanced precision printing and high-speed automated pick & place for integration of device components, interconnects, and data lines.

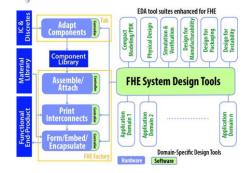
Developing and maturing contact and non-contact printing processes that support hybrid device concepts, including sensors and discrete device components. Printing & integration of microfluidic channels and fluidic control elements.

Technical Development Approach Manufacturing Thrusts (cont.)

MT3- Materials

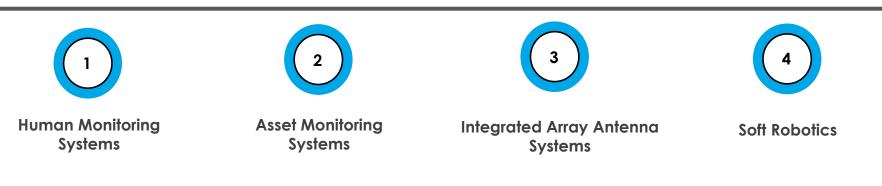

Manufacturing scale-up of conductive and dielectric inks and pastes, adhesives, encapsulant materials, and flexible substrates.

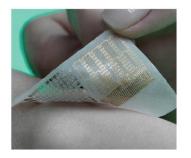
MT4- Modeling & Design


Leveraging existing software & hardware design capabilities, simulation techniques, and manufacturing process control tools while also integrating novel manufacturing design rules for FHE.

MT5- Standards, Testing, and Reliability

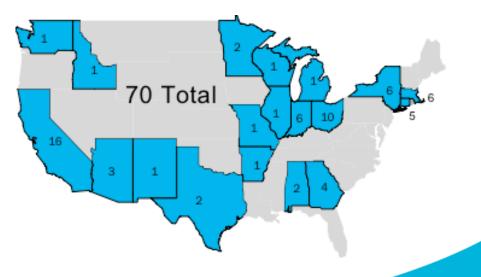
Developing tools and test protocols to evaluate device-level and systemlevel FHE performance as well as reliability in both commercial and military environments. Partnering with standards organizations and professional societies to develop specifications & standards.





Technology Platforms Demonstrations

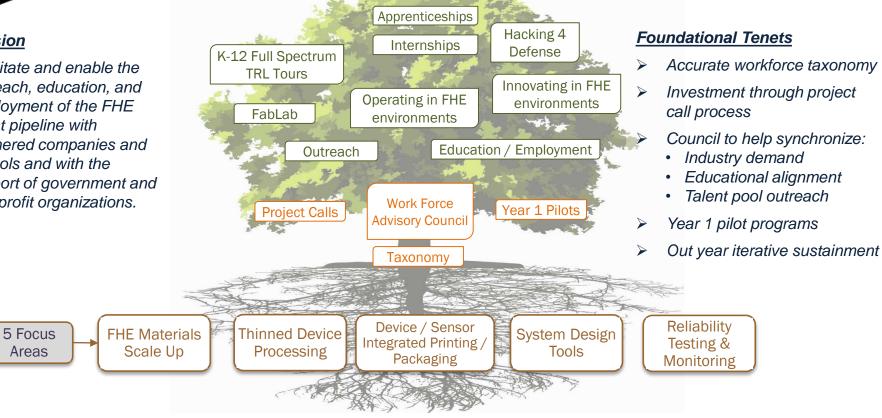
Technical Development Approach


Institute has Five Major Programmatic Thrusts

- 1. <u>Institute Acquisition Process</u> Develop FHE manufacturing ecosystem through Industrial-led Projects
- 2. <u>Pilot-scale manufacturing facility</u> in San Jose, CA for FHE integration
- 3. <u>Trained STEM work force</u> from K-12 outreach through workforce development and retraining
- Collaborative discussions between industry, government and academics to focus the FHE ecosystem
- 5. <u>Rapid acquisition vehicle</u> for agency FHE funding
 - 1. Open competition for government funding
 - 2. Leverage NextFlex review government-private expert structure
 - 3. Agencies control their own funding, final funding authority& management
 - 4. Rapid project award through existing Open Project Call process

Project Call 1.0 Distribution

- "Fast Start" delivers fastest path to first Project Call
 - 67 days from award to PC1.0 release
- Enthusiastic response
 - 70 Pre-proposals
 - Broad geographic diversity in lead
 institutions
 - 21 Industrial leads
 - 70 Industrial partners
- 18 Full proposals Received
- 11 Reviewers/Category
 - (3 Industry, 3 Academic)



Workforce Development

Growing a Lean and Flexible Program

Mission

Facilitate and enable the outreach, education, and employment of the FHE talent pipeline with partnered companies and schools and with the support of government and non-profit organizations.

Key WFD Activities to Date

Initiated Taxonomy Study

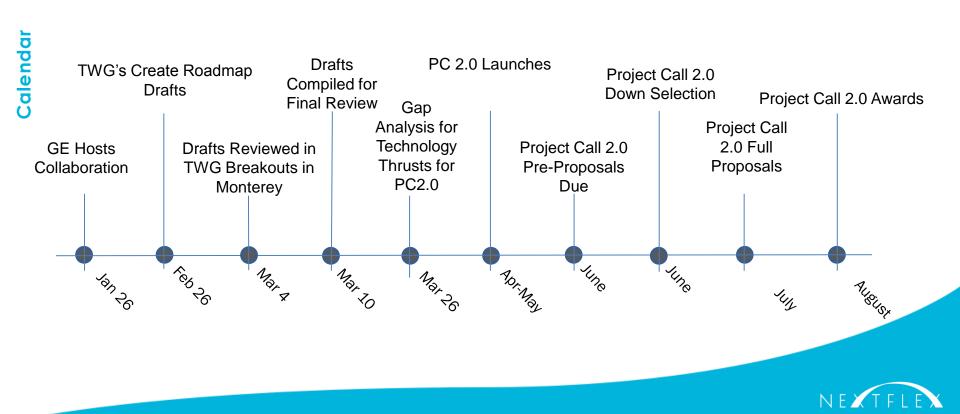
- Employment and Employer demand
- Wages
- Trends
- Education and Skills needs
- Program completions
- National and Regional viewpoints

Hacking 4 Defense pilot programs

- Helping to solve national security problems at SV speed with young technologists
- > Collaboration with DIUx,
- Graduate level course using Lean LaunchPad and the Mission Model Canvas
- 14 x agency problems tackled by over 50 x students applicants in first iteration

Kicked off coordination for Internship and Apprenticeship Pilots in OH and CA

Internships


- NE Ohio / Loraine County Community College Advanced Manufacturing Technician (Mechatronics) consortium
- Apprenticeships
 - San Jose area ICW San Jose City, Manex, ATCs, SRI, and local companies

Commenced Outreach Tours within the Hub Region

- Informing, inspiring, attracting HS students and veterans into FHE pathways
- Full spectrum facility tours
 - Research and Development
 - Production and Manufacturing

Roadmap & Project Call 2.0 Process

More Information

www.NextFlex.us

Contact:	James Zunino – US Army
	NextFlex Working Group
Phone:	(973) 724- 6773
Email:	james.l.zunino.civ@mail.mil

Contact: Paul Semenza Director of Commercialization Phone: (408) 577-1311 Email: <u>psemenza@nextflex.us</u>

Contact:	Eric Forsythe – US Army
	NextFlex Project Manager
Phone:	(301) 394-0606
Email:	eric.w.forsythe.civ@mail.mil

Contact: Ben Leever – US Air Force NextFlex Government CTO Phone: (937) 255-9141 Email: <u>benjamin.leever@us.af.mil</u>

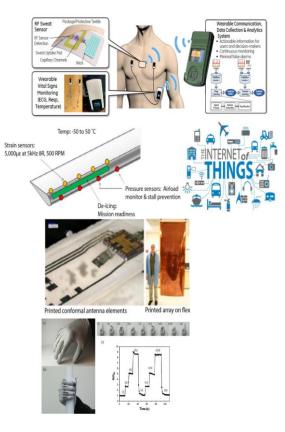
Technical Strategy Development Approach

Technology Platform Demonstrations

TPD1- Human Monitoring Systems

Wearable, unobtrusive, and non-invasive devices for sensing and reporting physiological state of warfighters, athletes, geriatric populations, and medical patients in varied environments.

TPD2- Asset Monitoring Systems


Conformal or integrated devices for sensing and reporting the state of infrastructure, vehicles, logistics, or the environment. Networks of sensors or devices for Internet of Things concepts.

TPD3- Integrated Array Antennas

Patterning of efficient printed wideband array elements on flexible or conformal surfaces and integration of thinned electronics with printed wideband array elements.

TPD4- Soft Robotics

Soft, compressible sensors and devices for robotic functionality, enabling active clothing, wearable robots or robotic tools, advanced prosthetics. Improved robot-human interactions for surgery, manufacturing, and consumer electronics.

